

V Semester B.A./B.Sc. Examination, November/December 2017 (Semester Scheme) (CBCS) (2016 – 17 & Onwards) (Fresh + Repeaters) MATHEMATICS – V

Time: 3 Hours

Max. Marks: 70

Instruction: Answer all questions.

PART-A

Answerany five questions:

 $(5 \times 2 = 10)$

- 1 a) In a ring $(R, +, \cdot)$ prove that $\forall a, b, c \in R, a \cdot (b c) = a \cdot b a \cdot c$.
 - b) Show that the set of even integers is not an ideal of the ring of rational numbers.
 - c) Prove that every field is a principal ideal ring.
 - d) If $\vec{F} = yz\hat{i} + zx\hat{j} + xy\hat{k}$, show that \vec{F} is irrotational.
 - e) Find the maximum directional derivative of xsinz ycosz at (0, 0, 0).
 - f) Prove that $E\nabla = \nabla E = \Delta$.
 - g) Construct the Newton's divided difference table for the following data:

x	4	7 9		12	
f(x)	- 43	83	327	1053	ŀ

h) Using Trapezoidal rule to evaluate $\int_{0}^{1} \frac{dx}{1+x}$ where

x	0	1/6	2/6	3/6	4/6	5/6	1
y = f(x)	1	0.8571	0.75	0.6667	0.6	0.5455	0.5

P.T.O.

PART-B

 $(2 \times 10 = 20)$

Answertwo full questions:

- 2, a) Prove that the set R = {0, 1, 2, 3, 4, 5} is a commutative ring with respect to $^{,}\oplus_{_{6}}$ and $^{,}\otimes_{_{6}}$ as the two compositions.
 - b) Prove that a ring R is without zero divisors if and only if the cancellation laws hold in R

OR

- 3. a) Show that an ideal S of the ring of integers $(z, +, \bullet)$ is maximal if and only if S is generated by some prime integer.
 - b) Prove that a commutative ring with unity is a field if it has no proper ideals.
- 4. a) If R is a ring and $a \in R$, let $I = \{x \in R/ax = 0\}$ prove that I is a right ideal of R.
 - b) If $f: R \to R'$ be a homomorphism with kernel K, then prove that f is one-one if and only if $K = \{0\}$.

OR

- 5. a) Let R = R' = C be the field of complex numbers. Let $f: R \to R'$ be defined by $f(z) = \overline{z}$ where \overline{z} is the complex conjugate of z, show that f is an isomorphism.
 - b) Prove that every homomorphic image of a ring R is isomorphic to some residue class (quotient) ring thereof.

PART-C

Answer two full questions:

(2×10=20)

- 6. a) Prove that $\nabla^2(f(r)) = f''(r) + \frac{2}{r}f'(r)$, where $r^2 = x^2 + y^2 + z^2$.
 - b) Find the unit normal to the surface $x^3 + y^3 + 3xyz = 3$ at the point (1, 2, -1).

- 7. a) Show that $\operatorname{Curl}\left[\vec{r}\times(\vec{a}\times\vec{r})\right]=3\vec{r}\times\vec{a}$ where \vec{a} is constant vector and $\vec{r}=x\hat{i}+y\hat{j}+z\hat{k}$.
 - b) If the vector $\vec{F} = (3x + 3y + 4z) \hat{j} + (x ay + 3z) \hat{j} + (3x + 2y z) \hat{k}$ is solenoidal, find 'a'.
- 8. a) Prove that $\nabla^2 \left(\frac{1}{r} \right) = 0$, where $r^2 = x^2 + y^2 + z^2$.
 - b) If $\vec{F} = \nabla (2x^3 y^2 z^4)$, find Curl \vec{F} and hence verify that Curl $(\nabla \phi) = 0$.
- 9. a) If ϕ is a scalar point function and \vec{F} is a vector point function, prove that $\operatorname{div}(\phi\vec{F}) = \phi\operatorname{div}\vec{F} + \operatorname{grad} \phi \cdot \vec{F}$
 - b) Find Curl (Curl \vec{F}) if $\vec{F} = x^2 y_1^2 2xz_1^2 + 2yz_k^2$.

PART-D

Answer two full questions:

 $(2 \times 10 = 20)$

a) Use the method of separation of symbols to prove that

$$u_0 + u_1 x + u_2 x^2 + \dots$$
 to ∞

$$= \frac{u_0}{1-x} + \frac{x\Delta u_0}{(1-x)^2} + \frac{x^2\Delta^2 u_0}{(1-x)^3} + \dots \text{ to } \infty.$$

- b) i) Evaluate Δ^{10} [(1 ax) (1 bx²) (1 cx³) (1 dx⁴)].
 - ii) Express $f(x) = 3x^3 + x^2 + x + 1$ as a factorial polynomial (taking h = 1). OR

11. a) Find a second degree polynomial which takes the following data:

x	1	2	3	4
f(x)	-1	-1	1	5

(b) Find f(1.9) from the following table:

x	1	1.4		2.2	
f(x)	2.49	4.82	5.96	6.5	

12. a) Using Lagrange's interpolation formula find f(6) for the following data:

x	x 2		7	10	12	
f(x)	18	180	448	1210	2028	

b) Using Simpson's $\frac{3}{8}^{th}$ rule evaluate $\int_{0}^{0.6} e^{-x^2} dx$ by taking 6 sub intervals.

 a) Following is the table of the normal weights of babies during the first few months of life.

Age in months	2	5	8	10	12
Weight in kgs	4.4	6.2	6.7	7.5	8.7

Estimate the weight of a baby of 7 months old using Newton's divided difference table.

b) Obtain an approximate value of $\int_0^6 \frac{dx}{1+x^2}$ by Simpson's $\frac{1}{3}^{rd}$ rule.